Systematic evaluation of label-free protein quantification pipelines in 12 mouse syngeneic models

نویسندگان

چکیده

Background: The widespread application of omics technologies in the past two decades has significantly expanded our knowledge cancer biology. Proteins act as link between genetic code and phenotype can better reflect dynamic state a cell. With rapid advances field proteomics, especially label-free proteomics quantification technology powered by LC-MS/MS, it is now routine to characterize quantify thousands proteins tumor samples timely manner. Data-dependent acquisition (DDA) been workhorse for bottom-up within few years, however, suffers from high percentage missing data originating its stochastic nature. this, data-independent (DIA) gained increasing popularity due higher reproducibility improved completeness. In this study, was used profile proteome 12 widely mouse syngeneic models, systematic evaluation performance different protein pipelines conducted. Methods: A total 120 were prepared models batches. Five collected per model when volume reached ∼500 mm3 (batch one) ∼1000 two). All analyzed DDA using MaxQuant software, three each batch DIA Spectronaut 15.0 software. Seven abundance matrices generated pipelines, based on combinations parameters, algorithms, methods. Missing analyses, sample similarity mRNA: correlation analyses conducted evaluate quality data. Results: outperformed many aspects, including coverage, reproducibility, discrimination power among correlation. More specifically, number with no all far outnumbered that DDA, much lower than DDA. On average had smaller coefficient variation measurement biological replicate unit. Further, greater differentiation observed Finally, slightly Conclusion: protocol developed data, found offers more comprehensive picture panel reproducibility. No conflict interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein quantification in label-free LC-MS experiments.

The goal of many LC-MS proteomic investigations is to quantify and compare the abundance of proteins in complex biological mixtures. However, the output of an LC-MS experiment is not a list of proteins, but a list of quantified spectral features. To make protein-level conclusions, researchers typically apply ad hoc rules, or take an average of feature abundance to obtain a single protein-level ...

متن کامل

Label-free microelectronic PCR quantification.

We present a robust and simple method for direct, label-free PCR product quantification using an integrated microelectronic sensor. The field-effect sensor can sequentially detect the intrinsic charge of multiple unprocessed PCR products and does not require sample processing or additional reagents in the PCR mixture. The sensor measures nucleic acid concentration in the PCR relevant range and ...

متن کامل

PSEA-Quant: A Protein Set Enrichment Analysis on Label-Free and Label-Based Protein Quantification Data

The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enri...

متن کامل

evaluation of sadr eminence in safavid period

چکیده: یکی از دوره های مهم تاریخی ایران به لحاظ تأمین استقلال ملی مذهبی و حتی تأثیر آن بر فرهنگ و مذهب ایرانیان، دوره صفویه است. رسمیت دادن و رواج مذهب شیعه توسط شاه اسماعیل اول، یکی از مهمترین اقدامات این دولت محسوب می شود. بنابراین برای اجرای این سیاست، وی منصب صدارت را به عنوان منصبی مذهبی- حکو متی ایجاد کرد .این منصب از دوره ی تیموریان ایجاد شده بود ولی در اواخر این دوره اهمیت بیشتری یافت...

15 صفحه اول

Tools for label-free peptide quantification.

The increasing scale and complexity of quantitative proteomics studies complicate subsequent analysis of the acquired data. Untargeted label-free quantification, based either on feature intensities or on spectral counting, is a method that scales particularly well with respect to the number of samples. It is thus an excellent alternative to labeling techniques. In order to profit from this scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Cancer

سال: 2022

ISSN: ['0959-8049', '1879-0852']

DOI: https://doi.org/10.1016/s0959-8049(22)00916-9